General Relativity: Tutorial 4

Professor Peter Dunsby, Room 303 Mathematics

1. A particle of rest mass m_1 moving with velocity u_1 along the x-axis collides elastically with a stationary particle of rest mass m_2 and as a result m_1 and m_2 are deflected through angles α and β respectively. If E and E' are the total energies of the particle m_1 before and after the collision respectively, show that

$$\cos \alpha = \frac{(E + m_2 c^2)E' - m_2 c^2 E - m_1^2 c^4}{\sqrt{(E^2 - m_1^2 c^4)(E'^2 - m_1^2 c^4)}}$$

2. In 2D Cartesian coordinates

$$f = 2xy$$

is a scalar and

$$\mathbf{V} \to (y, xy) \;, \quad \mathbf{W} \to (1, 1)$$

are two vectors.

- (a) Compute f as a function of polar coordinates (r, θ) and find the components of V and W on the polar basis, expressing them as functions of r and θ. [Hint: Use the transformation matrix Λ^α_β given in the lecture notes.]
- (b) Find the components of $\mathbf{\tilde{d}} f$ in Cartesians and obtain them in polars by (i) direct calculation in polars, and (ii) transforming from Cartesian coordinates.
- (c) Use the metric tensor in polar coordinates to find the polar components of the one-forms $\tilde{\mathbf{V}}$ and $\tilde{\mathbf{W}}$ associated with \mathbf{V} and \mathbf{W} . Obtain these components by transformation of the components of $\tilde{\mathbf{V}}$ and $\tilde{\mathbf{W}}$ in Cartesians.
- 3. For the vector field \mathbf{V} of question (1) above, compute;
 - (a) $V^{\alpha}{}_{,\beta}$ in Cartesian coordinates;
 - (b) the transformation $\Lambda^{\overline{\mu}}{}_{\alpha}\Lambda^{\beta}{}_{\overline{\nu}}V^{\alpha}{}_{,\beta}$ to polars;
 - (c) the components $V^{\overline{\mu}}_{;\overline{\nu}}$ using the Christoffel symbols given in the lecture notes [Why is this the same as (b)?];
 - (d) the divergence $V^{\alpha}{}_{,\alpha}$ in Cartesian coordinates;

- (e) the divergence $V^{\overline{\mu}}_{;\overline{\mu}}$ in polars using part (c);
- 4. Three dimensional Cartesian coordinates (x, y, z) are related to three dimensional cylindrical polar coordinates (r, θ, z) by

$$x = r \cos \theta$$
$$y = r \sin \theta$$
$$z = z.$$

Show that the line element in cylindrical polar coordinates is given by

$$ds^2 = dr^2 + r^2 d\theta^2 + dz^2$$
.

Calculate $\Gamma^r{}_{\theta\theta}$, $\Gamma^{\theta}{}_{r\theta}$ - these being the only non-zero components of $\Gamma^{\alpha}{}_{\beta\gamma}$, and hence show that the geodesic equations in cylindrical polars are

$$\begin{aligned} \frac{d^2r}{d\lambda^2} &- r\left(\frac{d\theta}{d\lambda}\right)^2 = 0 ,\\ \frac{d^2\theta}{d\lambda^2} &+ \frac{2}{r}\frac{dr}{d\lambda}\frac{d\theta}{d\lambda} = 0 ,\\ \frac{d^2z}{d\lambda^2} &= 0 . \end{aligned}$$

- 5. Using the usual coordinate transformations from Cartesian to spherical polars, calculate the metric on the surface of a sphere of unit radius. Find the inverse metric.
- 6. Calculate the Riemann curvature tensor of the surface of a sphere of unit radius using the result of the previous problem.